彩电新技术
动态会聚电路
会聚是指光栅扫描形成过程中,RGB三枪电子必须在同一栅逢相交,以击中荧屏上同一组RGB荧光粉.会聚有静会聚和动会聚两种,静会聚是指电子束停止扫描时,三电子束在屏幕中心的会聚.动会聚是指电子束扫描时屏幕四周的会聚.超平、纯平显像管都是单枪三束结构,RGB三子束呈水平一字型排列,RB两边对称地位于G束的两侧,由于制造时不可能没有工艺误差,所以,RGB三阴极的发射方向不可能准确地位于同一平面上,且RGB两边束也不可能以中间G束为轴绝对对称.静会聚是通过安装在显像管管颈上两个V、STAT磁片和两个BMC(六极)磁片的调整来实现.它只能保证中心区的会聚,而屏幕四角的会聚效果较差.如图H1和图H2。
动态会聚电路的功能是根据电子束的扫描位置来调整动态会聚电平,使 屏幕上每个区域都能获得最佳的会聚电平,使 整个画面看起来透切明亮,动态会聚校正由产生特殊扫描磁场的偏转线圈来完成,其中动会聚场偏转线圈产生桶形分布磁场,动会聚行偏转线圈产生枕形分布磁场,图H1表示了单枪三束显像管会聚的机制.动会聚校正的基本原理如图H3所示,动会聚线圈安装在显像管管颈,对应于极靴或偏转板的位置处,当动态会聚电路产生的行倾斜电流如图H3所示极性流入动会聚线圈时,动会聚线圈中激发的磁场使电子束RB两边分别产生远离中束的左右位移,而中电子束G所受的磁场力恰好抵消,因此中束的位置保持不变.从图H3看到,两边束位移后由RB位置变化到B'
R'位置,使R'.G.B'电子束的会聚点恰好落在屏幕上.只要给动态会聚线圈提供幅度形态适中的场和行频 抛物波电流,使 R.B两边束的左右位移呈抛物波状态变化,就可以实现动会聚误差的完全校正.
动态聚焦电路
显像管正常工作时,扫描电子束抵达屏幕中部和屏幕边缘所走过的路程距离不同,它所需的聚焦电压自然要求不同,以往旧式彩电的聚焦电路提供的是固定不变的直流电平,它只能使 屏幕中部聚焦达到 最佳,而屏幕边缘就难免出现散焦现象,反映到屏幕上的现象是画面四周模糊.为改善这种现象引入了动态聚焦电路.图D是这种电路的结构简图,由行回扫变压器引出一行逆程脉冲,在行逆脉冲控制下通过集成电路内的锯齿波电路的充放电产生一行频锯齿波电压,经倒相放大送到
L1、C1组成的积分电路,形成行抛物波电压.Tf为聚焦升压变压器,升压约28倍的反相行抛物电压约1000VP-P,经聚焦变压器Tf的二次摇组输出经C3藕合加至显像管的聚焦极,对来自行回扫变压器的聚焦直流电压进行调制,以改善一行扫描边缘的聚焦效果,使屏幕整幅画面同等清晰.
5D画质改善电路
现代的彩电都采用了很多先进的电路来改善提高图象还原的水平,如东芝飞视平面彩电,采用了所谓5D画质提高电路来提高图象的还原质量,每一个D是一项改善措施,它的分别是:1D彩色微细部分增强器.2D:高速描调制器.3D:三行数码梳状滤波器.4D:黑电平扩展电路.5D:超真实瞬态电路.
新型显像管
显像管作为重现图像的电光转换器件其品质的高低决定整机质量的优劣,显像管经历过从球面管→直角平面管→超平面管→纯平面管的发展历程,四种不同表面的显像管代表了各个不同时期彩管的制造工艺和技术水准.
1.球面管:屏幕呈球面和园角形状,由于屏幕曲率大,所以画面失真率高,边缘部分扭曲严重.
2.直角平面管:它仅仅是屏幕边沿和四个角稍为直角平面化,中间仍是起的球面管形状,但它比球面管有明显的改进,重现图象的清晰度提高,细节边缘形变较少,索尼公司的"特丽龙"(Trinitron)垂直柱面管的特点是消除了画面垂直方向的变形.
3.超平面管:超平面管决非平面还平面的显象管,它仅是对直角平面管而言的,这种显象管表面各处曲率均不同,但中心仍然是球面,四边是曲率不同的过度面.从表面上看,曲率已经极少,主观感觉比直角平面好得多,但因四周曲率突变所以产生一定程度的失真,这超平面管还采用了黑底涂层技术,有效地提高了图象的对比度减少了环境反射光的影响.
4.纯平面管:又称"全平"、"真平"、"镜面".它是二十世纪革命性的技术产品,其显著特点是无论从那个方向看显象管都是平的.由于显象管中心的球面不复存在,收视时不管在那个方向那个角度看图象文字都不再有变形,这种显象管除表面的改变外,其内部结构也处处凝结着高尖技术的成果.如松下的"锐屏"称辉聚显象管,这种超级超薄型彩管引入,专为高清晰度设计的大口径电子枪,令电子聚焦精度提高26%.东芝的"飞视"系列彩电,它采用了称为超级晶丽显像管而极为敏锐的电子枪配合动态四角聚焦电路,保证了全屏优良的聚焦特性.还有索尼的"贵翔"系列彩电,它采用FD
TRINITRON平面彩管,其FD电子枪使电子束聚焦精度提高30%,配合平坦的垂直栅条设计,全画面鲜明亮丽清晰悦目.
地磁场校正电路
显像管中的电子束受到地球磁场影响时,屏幕光栅将发生倾斜,使重现的电视画面在屏幕上产生几何变形,为此新形大屏幕彩电设置了地磁校正电路,图W是一种彩电的地磁场校正电路,它由微处理器ICI的14、38脚,Q2~Q4和继电器SJ01与装于显像管管颈的地磁校正线圈L组成,ICI的14脚Q2控制着SJ01内部的两组触点的切换,从而改变流入L中的电流方向达到改变L中磁场对电子束力的方向,使画面作顺时针方向旋转或是逆时针方向旋转,ICI的38脚输出正控制调宽脉冲PWM,PWM的宽度与校正量-3,-2,-1,0,+1,+2,+3一一对应,PWM加到Q4通过Q4,Q3放大,继电器SJ01的选通作用在校正线圈L两端,通过遥控器输入控制,完成对画面的倾斜校正任务.
100HZ数码扫描
人们在收看电视时会觉得图象闪烁,为了克服这种缺陷,必须提高电子束的扫描频率.我国电视广播标准规定:每秒传送25帧图象信号,采用隔行扫描方式,每帧又分两个扫描场完成,所以场频为50HZ,行扫描频率为15625HZ,100HZ倍频扫 技术就是将50HZ场扫描频率提高到100HZ,场频提高后,心须对50HZ的图象信号进行较为复杂的存储加工处理,处理方法是这样的:在场频提高到100HZ后,场扫描的周期同时由20ms缩减到10ms,由于水平扫描线仍为312.5行所以有10ms/312.5=32μs.即左使
行扫描频率由原来的15625HZ提高到31250HZ,改变接收机行场扫描频率不难,但要使50HZ/15625HZ格式的图象信号 与本机的100HZ/31250HZ扫描频率严格同步就要有一定的技巧,基于原来图象信号标准为一行64ms,所以首先要将 64μs为一行的图象信号压缩为32μs为一行,而时间轴的压缩将使图象信号的带宽也增加一倍,即由原来的6MHZ扩展为12MHZ.接着启用大容量存储,使每一场图象通过存储后再重复使用一次,即当场频提高后,那么每一帧就由4个扫描场来完成,第一场为奇数场,第二场为偶数场,第三场为重复奇数场,第四场为重复偶
数场.如图z所示。
电视画面是由"场 "和"帧"组成,100HZ技术将电视画面"场"的素质提高,而数码扫描技术则将"帧"的素质提高,两种技术的融合带来"质"的突破,使得图象更加清晰稳定.
索尼AC-1机芯100HZ倍频扫描系统由IC01、IC02、IC03、IC04、IC06、IC07、IC17共七片集成电路组成,其中IC01(TDA87550为A/D变换器,它的3、7、9脚输入场频50Hz的Y、U、V信号,15脚输入箝位脉冲,分别对三路信号进行箝位,然后在17脚输入的16MHZ时钟脉冲控制下,Y/50信号转换成8bit数字信号从24-31脚;U/50、V/50(彩色分量信号)信号转换成4bit数字信号从19-22脚输出.IC02、IC03(TMS4C2970-26DTR)同为场存储器,其中IC02的功能是通过读/写操作,将64us为一行的数字视频信号压缩成32us为一行.IC03的任务是将每一场数字视频信号进行存储后再重复使用一次.IC04(SAA4904H)是数码3D图象降噪和数码梳状滤波电路,除去A/D变换中的取样脉冲和其它量化杂讯.IC17(SAA7158)是后台结束操作处理电路,将100Hz扫描的Y、U、V数字信号转换成模拟信号.以上A/D变换、数据信号的压缩、存储复用以及D/A变换等处理过程,统一在微处理器IC07和存储控制器IC06(SAA4951)的编程控制下操作完成.